

Alternatives Analysis Threshold and 1,4-Dioxane

Abigail Noble, Ph.D. August 21, 2019

Outline

- The Alternatives Analysis Threshold (AAT)
 - Implications
 - Key Points
 - Nuances of DTSC's mandate and approach
- Proposed AAT for discussion
 - Laboratory procedures
 - Other product regulations
 - Estimated impacts on the California water supply

AAT: Implications, Theoretical Timeline

2020	2021	2022
 Propose Priority Product 	 Release Notice of Proposed Action to adopt the Proposed 	 Regulations go in to effect
 Release Proposed Priority Product Profile 	Priority Product through rulemaking	 Manufacturers have 180 days to submit.
Release AAT	 Hold workshop 	
 Open comment period 		

1,4-Dioxane Concentration	Manufacturer Submission
Below AAT in product	AAT Notification with verification
Above AAT in product	Applicable submission per the regulations, such as a Preliminary Alternatives Analysis

AAT: Key Points

- DTSC must set an AAT for a contaminant Chemical of Concern in a Priority Product
- AAT = Practical Quantitation Limit (PQL)* by default
 - PQL = 5 to 10 times the Method Detection Limit (MDL)
- AAT is set at the product level, not the ingredient level
 - Many ingredients may have 1,4-dioxane contamination
 - If a product concentration is above the AAT, determine and address the sources of the contamination during the Notification process.

^{*}defined in Section 69501.1(a)(52): "The lowest concentration of a chemical that can be reliably measured within specified limits of precision and accuracy using routine laboratory operating procedures."

AAT: Nuances of the mandate and approach

- DTSC cannot set AAT above PQL without good reason
 - "...it would not be prudent for DTSC to establish a threshold above the PQL absent information demonstrating that a higher level is appropriate." – Final Statement of Reasons
- Not a risk-based determination

Not necessarily a health-based determination

Outline

- The Alternatives Analysis Threshold (AAT)
 - Implications
 - Key Points
 - Nuances of DTSC's mandate and approach
- Proposed AAT for discussion
 - Laboratory procedures
 - Other product regulations
 - Estimated impacts on the California water supply

Proposed AAT: Available Laboratory Procedures

- 1,4-dioxane is a challenging compound to measure due to its volatility and miscibility, which lead to low recovery
- Most common techniques:
 - Gas Chromatography Mass Spectrometry (GC-MS)
 - Gas Chromatography Flame Ionization Detection (GC-FID)
- Many labs use US EPA Method 8260 or 8270 and modify to include isotope dilution, an internal isotope standard, and/or additional extraction techniques
- Existing methods seem capable of PQLs at or below 1 ppm

Proposed AAT: Other Product Level Regulations

- Federal level:
 - 1,4-dioxane presence in products is not regulated
- State level:
 - Pending New York legislation that would take effect 2023
 - 1 ppm in household cleansing products
 - 1 ppm in personal care products
 - 10 ppm in cosmetics

How much 1,4-dioxane found in wastewater influent is attributable to personal care and cleaning products?

- Concentrations of 1,4-dioxane in products
- Product use estimates
- Southern California water treatment plant data

9

Concentrations of 1,4-Dioxane in Products*

Products in red had sufficient data to perform estimated impact calculations.

Product Use Estimates*

Product	Activity	Product used per activity m _{pa}	Water used per activity V_a	Activity frequency per person per year
Laundry detergent	Laundering	98.5 g	189 L	100
Shampoo	Showering	13.1 g	65 L	312
Body wash	Showering	15.5 g	65 L	312

^{*} https://dtsc.ca.gov/wp-content/uploads/sites/31/2019/08/14-Dioxane-Draft-AAT-for-August-2019-Workshop.pdf

11

Southern California Water Treatment Plant Data*

Water reclamation plant	Population served	Residential MGD	Laundering influent	Showering influent
WN WRP	150,000	7.8	26.2 %	28.1%
OCSD	2,600,000	176	20.2 %	21.7 %
SJC WRP	1,000,000	58.4	23.4 %	25.2 %
Weighted average			21.3%	22.7%

Proposed AAT: Impacts on CA Water Supply Contribution from Personal Care and Cleaning Products

- Wastewater influent in Los Angeles County Sanitation Districts hovers around $1 \mu g/L$
- Because standard treatment is ineffective, influent ≈ effluent
- Current 1 μg/L effluent notification level, possible 0.35 μg/L

1,4-dioxane in product (ppm)*	1,4-dioxane in wastewater influent from select personal care and cleaning product use (µg/L)		
	Laundering	Showering	Total
Dataset Max	1.55	2.15	3.70
Dataset Mean	0.51	0.32	0.83
3	0.33	0.30	0.63
2	0.22	0.20	0.42
1	0.11	0.10	0.21

^{* 1} ppm = 1 μ g/g

Conclusions

- 1 ppm appears to be a reasonable AAT
 - Lab analyses suggest it is at or above reasonable PQLs
 - Would significantly reduce burden on wastewater influent
 - Limited data suggest it is technically feasible
 - Consistent with proposed legislation in New York
- Want to hear from Panelists and stakeholders what the impact of this AAT would be, what challenges are associated with meeting it, etc.

Questions for Panel

Is it feasible?

- What portion of the industry would meet that level now? With minimal, some, great effort?
- What factors will companies consider when deciding to try to meet the AAT or conduct an AA?

